
UNIT-III

Lecture-6

 An interrupt is an external or internal event
that interrupts the microcontroller to inform
it that a device needs its service

 A single microcontroller can serve several
devices by two ways:

 Interrupts: Whenever any device needs its
service, the device notifies the
microcontroller by sending it an interrupt
signal:

 Upon receiving an interrupt signal,
microcontroller interrupts whatever it is
doing and serves the device

 Six interrupts are allocated as follows:

 Reset – power-up reset

 Two interrupts are set aside for the timers:
one for timer 0 and one for timer 1

 Two interrupts are set aside for hardware
external interrupts: P3.2 and P3.3 are for
the external hardware interrupts INT0 (or
EX1), and INT1 (or EX2)

 Serial communication has a single interrupt
that belongs to both receive and transfer

 Upon reset, all interrupts are disabled
(masked), meaning that none will be
responded to by the microcontroller if they
are activated

 The interrupts must be enabled by software
in order for the microcontroller to respond
to them

 There is a register called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking) the
interrupts

 To enable an interrupt, we take the
following steps: (1.) Bit D7 of the IE register
(EA) must be set to high to allow the rest of
register to take effect

(2.) The value of EA: If EA = 1, interrupts are
enabled and will be responded to if their
corresponding bits in IE are high

 If EA = 0, no interrupt will be responded to,
even if the associated bit in the IE register is
high

 The timer flag (TF) is raised when the timer
rolls over

 In polling TF, we have to wait until the TF is
raised

 The problem with this method is that the
microcontroller is tied down while waiting
for TF to be raised, and can not do anything
else

 Using interrupts solves this problem and,
avoids tying down the controller:

 If timer interrupt in IE register is enabled,
whenever timer rolls over, TF is raised, and
microcontroller is interrupted in whatever it
is doing, and jumps to interrupt vector table
to service the ISR

